Nadja Popovich: Lake Ice Future

New York Times:

lakes_efs.gif
In a study published last week in the journal Nature Climate Change, scientists for the first time quantified the effects of rising temperatures on ice cover across 1.4 million lakes in the Northern Hemisphere. They found that, from Wisconsin to Japan, thousands of lakes that used to freeze reliably every winter already see some years without ice, and that “an extensive loss of lake ice will occur within the next generation.”

The vanishing ice will affect cold-water ecosystems and be felt by millions of people who live near northern lakes, the study said.

The study.

Brad Dokken: Vehicle at Bottom of Lake?

Brainerd Dispatch:

1pw8shooppjgntmpq2xr8lo63jsmejbt6.jpg
Thompson, who aptly is nicknamed “Seal,” says Tri-State Diving does anywhere from 10 to 15 salvage operations in a typical winter. As of mid-January, the company already had pulled nine ATVs, vehicles or fish houses from lakes across the region, and more jobs await them when weather conditions improve. “It’s getting to be more and more because of how well we’re getting known and insurance companies calling us direct,” Thompson said. “‘Dirty Jobs’ put us on the map.”

Tri-State shoots photos or video of all of its retrieval jobs and posts the footage on Facebook, Thompson said, which also helps to spread the word. “Plus, there are a lot of the areas where conservation officers know the kind of work we do, and they refer (people) to us,” he said.

Tri-State uses a device called a SUVE (pronounced soo-vee)—which stands for Submerged Underwater Vehicle Extractor—for retrieving vehicles. In very basic terms, the SUVE is like a big teeter totter with a winch on the top to raise whatever’s submerged to the surface. Thompson has patents on both the apparatus and the teeter-totter concept it employs, he says. “It’s just two rails (the vehicle) rides up, and once it’s up on top and gets past center, we just bring it down on the ice,” Thompson said.

David Peterson: Lake Water Level Appeal

Star Tribune:

1506468482_10065521+1lake092717.JPG
The state of Minnesota will appeal a landmark ruling on the excessive pumping of groundwater around White Bear Lake, saying it is “not supported by scientific evidence” and would “immediately halt important development” within five miles of the lake.

In a written statement Tuesday underlining the ruling’s potential to reach all across Minnesota, DNR Commissioner Tom Landwehr said: “The DNR is strongly committed to protecting Minnesota’s many precious water resources, including White Bear Lake and its surrounding aquifers. We take that responsibility very seriously. But responsible, effective water management must be supported by sound science.”

Katie Crosby Lehmann, lead attorney in a team of lawyers that worked the case over several years’ time, said in a statement late Tuesday: “We stand by the detailed scientific evidence from the monthlong trial. As demonstrated by the [judge’s 140-page] opinion, the DNR has known of the problems caused by its permitting actions since issuing its own 1998 study and has concluded that the water use in the north and east metro area is not sustainable.”

Steven Verburg: Farm Pollution Exacerbated by Zebra Mussels

Wisconsin State Journal:

An explosion of the zebra mussel population in Lake Mendota this year could mean more foul-smelling shoreline slime and repeats of the major fish kill and vast bloom of toxic bacteria that hit Madison’s lakes already this summer, experts say.

Farm pollution is the main driver of this month’s surprisingly severe water quality woes, but the invasive mollusks now covering much of Lake Mendota’s bottom aren’t going to help matters.

“We’ve been shocked to see how many there are,” said Jake Vander Zanden, UW-Madison’s top expert on zebra mussels.

Zebra mussels change a lake by filtering food from water, which makes water clearer so that additional sunlight reaches the bottom. The sunlight, along with nutrients mussels excrete on the bottom, spur plant growth and the potential for more dead vegetation washing up and decomposing in smelly piles on shores, Vander Zanden said.

This year divers are finding a typical zebra mussel by-product — bottom-clinging mats of algae that look like green cotton candy — all over Lake Mendota, he said.

Greg Seitz: Earth's Lakes

MinnPost:

Minnesota has about five percent of America’s lakewater right here, with a total volume of 66 cubic miles (not counting Lake Superior). That’s about twice as much as a typical state.

Our state’s most famous lake is surely Superior, the biggest freshwater lake in the world by surface area and, as it turns out, the largest volume of lakewater in the United States, and six percent of all the lake water in the world.

It’s so big that if you poured all the inland lakes in America into it, Superior wouldn’t even be half full. Its 2,900 cubic miles of water is more than in the other four Great Lakes combined, which contain another five percent of the world’s total lake water. They are truly great, and superior.

Lee Bergquist: Water Wars on the Sand Counties of Wisconsin

Milwaukee Journal Sentinel: Two articles on groundwater and lakes

War Over Water

In 2010, Minnesota lawmakers passed legislation giving that state’s DNR the authority to establish groundwater protection areas that allow the agency to limit water use to meet human needs and protect lakes, streams and wetlands.

After three years of review, the first protection area was designated in November 2015 in metropolitan St. Paul — an area that runs to the Wisconsin border. Two other areas have been identified in rural areas of Minnesota.

In Wisconsin, with Kraft’s work being questioned and environmentalists pressing for action, the DNR and the growers association underwrote a two-year, $230,000 study of the Little Plover.

In April, the Wisconsin Geological & Natural History Survey and the U.S. Geological Survey found that groundwater played a key role in the health of the Little Plover; the river was vulnerable to groundwater pumping; and that stream flows would improve substantially if wells nearest the river were removed.

The study “did not refute the work of Dr. Kraft — if anything, it built on that work,” said Ken Bradbury, director of the state natural history survey and co-author of the study.

But Tamas Houlihan, executive director of the potato and vegetable group, said his industry isn’t convinced, although he says growers near the Little Plover have voluntarily changed their farming and irrigation practices to conserve water.
— http://www.jsonline.com/story/news/local/wisconsin/2016/09/03/war-over-water-land-plenty/89481060/
Water Policy

Plainfield — Three years after Brian Wolf bought his home on Long Lake in 2006, lawmakers and water policy experts began stopping by to see what had happened to the lake.

”It’s as if someone pulled the plug in a bathtub,” Wolf told one group of visitors in November 2009. “This lake is dead.”

Legislators left Wolf’s home in western Waushara County with plans to address growing worries about high-capacity wells and the effect groundwater pumping was having on lakes, rivers, streams and wetlands.

But lawmakers tried and failed to pass a groundwater bill in the 2010 legislative session. This year, legislative efforts also went nowhere.

This summer, the water in Long Lake is mostly gone, dotted by a few marshy areas. Cattails and grasses sprout from the former lake bed. Other traditionally shallow lakes in this region of sandy soil in the middle of the state have shared similar fates.

A dock on Long Lake near Coloma is surrounded by weeds. The lake has seen its water levels plummet and has become a marsh. Landowners blame the large number of high-capacity wells used to irrigate crops in the region.

They have become symbols of the tug-of-war over water use in Wisconsin. The advantage has shifted to large water users as the number of high-capacity wells have proliferated and efforts to put more limits on the use of groundwater have foundered.
— http://www.jsonline.com/story/news/local/wisconsin/2016/09/04/conflicts-thwart-reforms-state-water-policy/89482796/

Jake Vander Zanden: Lake Dead Zones

Reporting from New Zealand:

UW-Madison’s Limnology Center: Earlier this year, Jake Vander Zanden rented his house out in Madison, packed his things, and headed with his family for a sabbatical in New Zealand. Under the auspices of a Fulbright scholarship, Jake is at the University of Waikato, studying ‘dead zones’ in lakes, where pollution reduces oxygen making it impossible for parts of lakes to support life.

Tell us about your research here in New Zealand
I’m looking at the phenomenon of lake ‘dead zones’. Lakes that in the past had a lot of oxygen in the bottom waters can lose that oxygen due to nutrient pollution – often from human activity – then they become an environment that can’t support life. You lose a lot of the value that would come from a lake, such as fisheries, when you have dead zones.

It seems like once you create dead zones they are difficult to turn back. Even if you remove nutrients and improve conditions, the healthy ecosystem never returns. That’s really worrisome because it is so difficult to fix the problem. Another consideration is that when you create a dead zone, the plant nutrient phosphorus is released from the lake sediments, which further contributes to the pollution problem.

Thompson and Rogers: Global Warming Threatens Lake Trout

Thunder Bay News:

Warming water from climate change is beginning to encroach on the habitat of Northwestern Ontario’s cold water fish. Research conducted at the Experimental Lakes Area shows the region’s temperature has warmed 0.4 C over each of the last five decades. Shorter winters are heating surface water and delaying lake trout spawning.

The runoff from increasing summer rain is causing a tea-like discolouration, affecting the water’s heat distribution and compounding the change. Added together, fish biologist Lee Hrenchuk can see consequences for aquatic ecosystems beginning to show.

“The average size of an adult fish has been decreasing over time and we’re seeing this mostly in the cold water fish species that are really dependent on having good spring periods and good fall periods where they can do a lot of eating,” Hrenchuk said.

Jim Erickson: Voluntary Actions May Not Solve Lake Erie's Pollution Problem

University of Michigan:

Large-scale changes to agricultural practices will be required to meet the goal of reducing levels of algae-promoting phosphorus in Lake Erie by 40 percent, a new University of Michigan-led, multi-institution computer modeling study concludes.

The main driver of the harmful algal blooms is elevated phosphorus from watersheds draining to Lake Erie’s western basin, particularly from the heavily agricultural Maumee River watershed. About 85 percent of the phosphorus entering Lake Erie from the Maumee River comes from farm fertilizers and manure.

The new study, which integrates results from six modeling teams, was released today by the U-M Water Center. It concludes that meeting the 40-percent reduction target will require widespread use of strong fertilizer-management practices, significant conversion of cropland to grassland and more targeted conservation efforts.

”Our results suggest that for most of the scenarios we tested, it will not be possible to achieve the new target nutrient loads without very significant, large-scale implementation of these agricultural practices,” said U-M aquatic ecologist Don Scavia, lead author of the new study and director of the Graham Sustainability Institute.

You can ask farmers to help, you can pay farmers to help, you can tell farmers to help, or is there another way? 

Ross Andersen: Insight from Lake Sediment

Atlantic:

On a spring morning in New Hampshire, 2,000 years ago, sunlight struck a black cherry tree, opening its white-and-yellow blossoms. As the tree swayed gently in breeze, spiky, spherical pollen grains spilled out of its flowers, and floated up through the limbs and leaves of the canopy, before drifting down to the still surface of a nearby lake. Cool water stalled the pollen’s descent, but still, it kept falling, riding the currents all the way to the lake’s bottom, where it mixed with silt and slowly hardened into sediment.

Time piled new layers of mud and soil atop the pollen, pushing it deeper into the Earth. For two millennia, it continued to sink at that geologic pace, until suddenly, and with some violence, it was slurped up to the surface, through an aluminum tube.

Sitting on a floating platform, a small team of scientists pulled the pollen up as part of a cylinder of sediment, a core bored out of the lake bottom. A core looks like nothing more than a cross-section of muck, but each of its sedimentary slices is an archive, packed with fragments of sticks and leaves, charred remains of wood—and enough pollen grains to census the trees that once surrounded the lake.

Lee Bergquist: WI DNR to Sell Lake Frontage to Scott Walker Donor

Milwaukee Journal Sentinel:

Elizabeth Uihlein, a major donor to Gov. Scott Walker, has reached an agreement with the Department of Natural Resources to buy 1.75 acres of prime lakefront property in Vilas County — a deal that gives her direct lake access to another property she now owns.

The agreement calls for the DNR to sell Uihlein 765 feet of frontage on Rest Lake in the Town of Manitowish Waters for $275,000. She currently owns an adjacent 11-unit condominium complex without lake access.

Uihlein and her husband, Richard, have donated nearly $3 million to Walker in recent years.

The businesswoman is a significant property owner in Manitowish Waters, is active in local affairs and is noted for her philanthropy, including paying for much of the cost of a pavilion in the community’s Rest Lake Park. A town official said that project will cost more than $1 million.

But also she has faced criticism for some of her activities and currently is under orders from Vilas County to replant trees at her condo complex after a worker she hired clear-cut foliage this summer on a portion of the property closest to the DNR land.

Joan Rose: Sewer Tanks Aren't Keeping Poo Out of Lakes

MSU:

The notion that septic tanks prevent fecal bacteria from seeping into rivers and lakes simply doesn’t hold water, says a new Michigan State University study.

Water expert Joan Rose and her team of water detectives have discovered freshwater contamination stemming from septic systems. Appearing in the Proceedings of the National Academy of Sciences, the study is the largest watershed study of its kind to date, and provides a basis for evaluating water quality and health implications and the impact of septic systems on watersheds.

“All along, we have presumed that on-site wastewater disposal systems, such as septic tanks, were working,” said Rose, Homer Nowlin Endowed Chair in Water Research. “But in this study, sample after sample, bacterial concentrations were highest where there were higher numbers of septic systems in the watershed area.”

Time to rethink the use of individual sewer system around our lakes. These systems are big polluters.

The PNAS paper.

NASA: Less Algae, Not Clear Water, Keeps A Lake Blue

Lake Tahoe’s iconic blueness is more strongly related to the lake’s algal concentration than to its clarity, according to research in “Tahoe: State of the Lake Report 2015,” released today by the Tahoe Environmental Research Center (TERC) of the University of California, Davis. The lower the algal concentration, the bluer the lake.

Data from a research buoy in the lake, owned and operated by NASA’s Jet Propulsion Laboratory, Pasadena, California, enabled Shohei Watanabe, a postdoctoral researcher at TERC, to create a Blueness Index that quantified Lake Tahoe’s color for the first time.

The assumption that lake clarity is tied to blueness has driven advocacy and management efforts in the Lake Tahoe Basin for decades. But Watanabe’s research showed that at times of the year when the lake’s clarity increases, its blueness decreases, and vice versa.

Watanabe combined the blueness measurements with data on clarity. Clarity is measured by observing the depth at which a dinner-plate-sized white disk remains visible when lowered into the water. He was surprised to find that blueness and clarity did not correspond. In fact, they varied in opposite directions.

This is due to seasonal interplay among sediment, algae and nutrients in the lake. Clarity is controlled by sediment. Blueness is controlled by algal concentration, which in turn is controlled by the level of nutrients available to the algae.

AnnaKay Kruger: A Lake's Woody Habitat

UW: Center for Limnology:

Michaela Kromrey clips herself into her bulky waders, fitting the straps over her shoulders and sealing herself into their protective rubber lining. We’ve dropped anchor near the shore of Jute Lake, and waves whip the side of the boat vigorously in the high wind. It’s a beautiful day, utterly devoid of cloud cover, but the wind is sharp and swift over the water, forcing us to don our sweatshirts and windbreakers to stave off the chill. Michaela and I, both UW-Madison undergraduates, wait in the boat while Ellen Albright, a student at Minnesota’s Macalester College, wades along the shoreline, dragging a tape-measure behind her.

Greg Seitz: Unlocking Lake of the Woods

St. Croix Watershed Research Station Blog:

low-tp-load-rainy-river-1960-2010-hargan-et-al-2011-jglr-fig-4b.jpg
Lake of the Woods is the vast body of water that makes up most of the spur on Minnesota’s northern border. Sprawled across the U.S.-Canada border, it is 70 miles north-south and 60 miles east-west, contains more than 14,552 islands, and boasts 65,000 miles of shoreline. It is the size of Rhode Island and a good candidate as the “sixth Great Lake.”

Like Lake Erie and other Great Lakes, Lake of the Woods is also plagued by harmful algal blooms. Even after nutrient pollution was reduced, Lake of the Woods seems to keep getting greener.

Enormous amounts of waste discharged from paper mills on the Rainy River poured into the lake for decades, carrying phosphorus, which fed the algae. City wastewater also went straight into the river. After the Clean Water Act was passed in 1972, the waste discharges were significantly lowered and the overall cleanliness of the water entering the lake was improved.

Steven Elbow: Lake Conservation Can't Keep Up with Pollution Increases

Cap Times:

A new report says that a 14-year effort to clean up Lake Mendota couldn’t keep up with increasing amounts of phosphorous streaming from the watershed.

The study from the Water Sustainability and Climate Project at the University of Wisconsin-Madison says a 14-year effort to clean up Lake Mendota failed because of changes in farming, land development and climate change.

“There’s been a lot of tremendous work and effort to at least stay on the treadmill,” said co-author Eric Booth, a Climate Project researcher. “The problem is the treadmill keeps getting faster and faster with these other unaccounted for drivers of change.”

The result is that increasing efforts have slowed but not improved the decline of the lakes.

The report is specific to Lake Mendota, but could have implications worldwide as communities elsewhere try to tackle similar problems.

1. More information here and here!

2. In a world with increasing human population and exploitation demands, conservation will at best be a Red Queen Race. We know this to be true, but we don't dare say it because it is too unpleasant for most.

NASA: US Government Develops Tool to Detect Toxic Algal Blooms

Accuweather:

650x366_04301650_15-058.jpg
Four government organizations are combining resources to tackle a threat to U.S. freshwater: toxic algal blooms. These harmful algal blooms cost the U.S. $64 million annually to combat.

NASA is working alongside the National Oceanic and Atmospheric Administration, the Environmental Protection Agency (EPA) and the U.S. Geological Survey (USGS) to transform satellite data used to monitor ocean biology into valuable information to monitor detrimental freshwater algal blooms.

The new project, using ocean color satellite data, will formulate an “early warning indicator” for toxic algal blooms in freshwater systems and aid public health advisories, NASA reported.
”Observations from space-based instruments are an ideal way to tackle this type of public health hazard because of their global coverage and ability to provide detailed information on material in the water, including algal blooms” said Paula Bontempi of the Earth Science Division at NASA Headquarters in Washington, D.C..

Elizabeth Dunbar: Polluted Minnesota Lakes and Rivers

Minnesota Public Radio:

confluence-miss-stcroix-600.jpg
Six and a half years after Minnesotans voted to raise taxes to clean up lakes and streams, it’s clear the state has a long way to go. A report released Wednesday representing data from half of the state’s watersheds shows half or more of lakes and streams monitored in the southern half of the state are plagued by bacteria, sediment, nutrients and other pollutants.

Those bodies of water are often too nasty to swim in and can’t fully support fish and other aquatic life, according to the report. With help from the Legacy Amendment, which voters approved in 2008 to raise sales tax revenue for the environment and the arts, the Minnesota Pollution Control Agency is monitoring and assessing lakes and rivers in all of the state’s 81 watersheds — geographic areas defined by all of the waters emptying into the same body of water.

Ron Meador: Can Minnesota Achieve Sustainable Water Use?

MinnPost:

Swackhamer has a serious gift for synthesizing complex scientific material in ways that non-specialist listeners can grasp, and it’s paired with matchless expertise on this subject: She directed the University of Minnesota’s Water Resources Center from 2002 to 2014, and led the effort to produce the massive Minnesota Water Sustainability Framework, commissioned with funds from the Legacy Amendment to provide policy guidance for decision-making over the next 25 years.

She has served in leadership roles on scientific panels advising the U.S. Environmental Protection Agency and the International Joint Commission, and has just begun a three-year term on a National Academy of Sciences panel focused on environmental science and toxicology, recognition of her focus on toxic-chemical pollution. And she does not shrink from controversy. For example, she had much to say about the fraught connections between large-scale agriculture and Minnesota’s water problems, some of it quite provocative.

If we shift from issues of water quantity to issues of water quality, she observed, we see that more than 4,100 lakes and stream sections across the state – or more than 40 percent of the total – are classed as “impaired” because they fail to meet federal quality standards. The major driver of these impairments is excessive inputs of nutrients, primarily phosphorus and nitrates from fertilizers, and the major source of those nutrients is row-crop agriculture.

Anson Mackay: Lake Baikal Threatened by Proposed Dam

The Conversation:

Mongolia is hoping a massive dam on its largest river could provide much needed power and water for the country’s booming mining industry. However environmental groups are concerned that the hydroelectric power plant and a related pipeline project will do immeasurable environmental damage to oldest and deepest freshwater body in the world: Lake Baikal...

he Shuren Hydropower Plant, planned on the Selenga River in northern Mongolia, was first proposed in 2013 and is currently the subject of a World Bank-funded environmental and social impact assessment. In tandem, Mongolia is also considering building one of the world’s largest pipelines to transport water from the Orkhon River, one of the Selenga’s tributaries, to supply the miners in the Gobi desert 1,000km away.

By far the largest and most important of the 350-plus rivers that flow into Lake Baikal is the Selenga River, which contributes almost 50% of the lake’s water. The Selenga and its tributaries cover a vast area, much of it in northern Mongolia, and the catchment of Lake Baikal is bigger than Spain. The river enters Lake Baikal through the Selenga Delta, a wetland of internationally recognised importance.

The delta is crucial to the health of Lake Baikal. Its shallow waters are a key spawning ground for Baikal’s many endemic fish and is on the migratory route for millions of birds every year. It also filters out impurities flowing through the river before they reach the lake.