Stephanie E. Hampton: Winter Limnology

Eos:

Credit: Sergey Pesterev

Credit: Sergey Pesterev

Historically, research on inland waters has focused on the warmer months of the year. Limnologists have mostly avoided studying lakes in winter, especially lakes that experience seasonal ice cover, as if dynamics beneath the ice were unimportant.

But multiple lines of evidence now present a compelling case that winter is indeed a fascinating and important time for lakes. Under dark conditions, when snow and ice obscure light penetration, degradation of organic material already in lakes still occurs, and when clear ice allows some light through, this light can fuel primary production to levels even higher than those in summer.

Recent high-profile data syntheses of lake water temperatures, ice cover, and ecology under lake ice [Hampton et al., 2017] are galvanizing the scientific community to focus on winter studies, and new data streams are being amassed by in situ sensors deployed during seasonal ice cover. Furthermore, recognition of the magnitude and rapidity of ice loss trends combined with recent work highlighting substantial socioeconomic impacts for people whose livelihoods are associated with winter lake ice cover suggests that winter presents an important research frontier within limnology, from the biology and biogeochemistry of lakes to the dynamic physics of cold water and the sociological and cultural ramifications of change.