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Abstract: We used simulations to compare the distributions of estimation errors for virtual population analysis using
forward calculation (FVPA) and three variants of statistical kill-at-age analysis (KAA). The KAA variants assumed
constant, time-blocked, and nonadditive selectivity. Simulations were based on a recreational walleye (Sander vitreus)
fishery in Lake Mille Lacs, Minnesota. The focus of our experiments was on how model mis-specification (incorrect
assumptions about selectivity for KAA or that kill had no error for FVPA) interacted with the magnitude of measure-
ment errors and fishing mortality. We found that KAA models outperformed FVPA when they assumed the correct se-
lectivity pattern, even when kill was measured without error. Of particular concern was a strong tendency by FVPA to
overestimate stock size when kill was measured with substantial error. When KAA was based on an incorrect assump-
tion regarding fishery selectivity and kill was measured with little error, wide distributions of errors and substantial bi-
ases sometimes resulted. KAA models that allowed fishery selectivity to change over time performed about as well as
a constant-selectivity KAA model when selectivity was constant, and they performed much better when selectivity
changed over time. Careful consideration of alternative fishery selectivity models should be a fundamental part of any
age-structured assessment.

Résumé : Des simulations nous ont permis de comparer les distributions des erreurs d’estimation dans une analyse vir-
tuelle de population utilisant un calcul prospectif (FVPA) et trois variantes d’une analyse statistique KAA (kill-at-age,
mortalité à un âge donné). Les variantes de l’analyse KAA présupposent une sélectivité constante, déterminée en fonc-
tion du temps et non additive. Nos simulations se basent sur la pêche sportive de dorés (Sander vitreus) dans le lac
Mille-Lacs, Wisconsin. Nos expériences visent à étudier comment les paramètre erronés des modèles (présuppositions
fausses de la sélectivité pour KAA et présupposition d’absence d’erreur de mortalité dans FVPA) interagissent avec
l’importance des erreurs de mesure et de la mortalité due à la pêche. Les modèles KAA fonctionnent mieux que les
modèles FVPA lorsqu’on présuppose les bons patterns de sélectivité, même quand la mortalité est mesurée sans erreur.
Il est particulièrement inquiétant que les modèles FVPA aient une forte tendance à surestimer la taille du stock lorsque
la mortalité est estimée avec une erreur importante. Lorsque l’analyse KAA est basée sur des présuppositions fausses
concernant la sélectivité de la pêche et que la mortalité est mesurée avec peu d’erreur, il peut en résulter quelquefois
de distributions étendues des erreurs et des tendances erronées importantes. Les modèles KAA qui permettent à la
sélectivité de la pêche de changer dans le temps fonctionnent presque aussi bien que le modèle KAA à sélectivité
constante lorsque la sélectivité est constante et fonctionnent beaucoup mieux lorsque la sélectivité varie dans le temps.
Toute évaluation qui tient compte de la structure en âge devrait considérer de façon attentive les différents modèles de
rechange de sélectivité de la pêche et en faire une partie essentielle de l’analyse.

[Traduit par la Rédaction] Radomski et al. 452

Introduction

A widely accepted standard for stock assessment is age-
structured modeling to integrate information about a fish pop-
ulation (Megrey 1989; Hilborn and Walters 1992; Quinn and
Deriso 1999). Kill limits and other biological reference points
derived from such assessments form the scientific basis for
management of many of the world’s most important fisheries.

One common modeling family is virtual population analysis
(VPA) (Jones 1963; Gulland 1965; Murphy 1965) and its
variants: cohort analysis (Pope 1972) and ADAPT (adaptive
framework approach to VPA, Gavaris 1988). A second fam-
ily is statistical age-structured assessment models (Fournier
and Archibald 1982; Deriso et al. 1985; Methot 1989). We
denote this family as KAA (kill-at-age analysis) to empha-
size that it is the number of fish killed, not the number
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caught, that is important for assessment; many fish caught in
recreational fisheries may be released unharmed. VPA meth-
ods have been popular in eastern North America and Eu-
rope, whereas KAA methods have been popular in western
North America, South Africa, Australia, and New Zealand;
in many other areas, no clear favorite has emerged.

The fundamental difference between the two is that the
VPA family assumes that kill-at-age is measured without er-
ror. Of course practitioners know that kill is measured with
some error, and their use of VPA reflects a belief or hope
that results will be robust given the level of measurement er-
ror. VPA can use backward or forward recursive calculations
to obtain abundance at age. Backward VPA approaches al-
low for constraints on terminal abundances or fishing mor-
talities. Such constraints (linkage assumptions) often lack
statistical backing or are ad hoc in nature (Quinn and Deriso
1999), but their imposition can increase stability in the esti-
mation routines by limiting the number of parameters that
are directly estimated. Both VPA approaches allow year- and
age-specific fishing mortality rates to be calculated from the
resulting estimates of abundance at age. Earlier VPA imple-
mentations amounted to a calculation procedure, not an esti-
mation procedure. Recent VPA implementations statistically
incorporate auxiliary data to estimate population size at age,
yet they still assume kill is measured without error. Given A
ages and Y years of data, there are AY catch-age observations
and A + Y – 1 year classes present in the database. If, as as-
sumed by VPA, kill is measured without error and natural
mortality is known, then estimation of A + Y – 1 year-class
parameters in a stock assessment model (see Appendix A)
is sufficient to determine abundances at all ages. Some im-
plementations of VPA further reduce the number of formal
parameters by imposing assumed relationships for terminal
fishing mortality rates.

In contrast, if catch is measured with error and natural
mortality is known, as assumed by KAA, then estimation of
A + Y – 1 year-class parameters and AY fishing mortality
parameters is necessary to determine abundances at all ages.
The total of AY + A + Y – 1 parameters is greater than the
number of observations, requiring assumptions to reduce
the number of parameters so that the model is not over-
determined. KAA reduces the number of fishing mortality
parameters that are estimated by assuming separability of
fishing mortality into age (selectivity and (or) vulnerability)
and year (fishing intensity) factors for a block of years or by
assuming some other statistical model for fishing mortality
with reduced parameters. Thus, KAA presents concerns about
how well selectivity has been modeled and whether results
will be robust when the modeled fishing process diverges
from the actual one. Even with these selectivity assumptions,
KAA requires more formal parameters to determine abun-
dance at age than VPA.

Some researchers believe that VPA is more parsimonious
than KAA because fewer formal parameters need to be esti-
mated. Others believe the opposite because the relationships
among fishing mortality rates in VPA (without linkage as-
sumptions) are constrained only by the kill data. In this
view, each of the unconstrained AY fishing mortality rates in-
creases the effective number of parameters that needs to be
estimated. If the kill data can be matched in more than one
way, the lack of further constraints on fishing mortality

could be a disadvantage for VPA. Furthermore, in the pres-
ence of measurement error, VPA can be viewed as an exact
solution to a set of catch equations, in which fishing mortal-
ity is estimated for each age and year. From this viewpoint,
VPA estimates many more parameters than KAA. In con-
trast, the statistical elegance of KAA may not be reflected in
the performance of the method compared with VPA if the
specified model for fishing mortality is not a reasonable ap-
proximation of the actual processes that are operating.

Although a variety of limitations and assumptions for VPA
and KAA are well understood, it is rare to see comparisons of
both approaches for a managed fishery. International Council
for Exploration of the Sea (1993) and the National Research
Council (NRC) (1998) evaluated the performance of several
modeling approaches by simulating fish populations and fish-
eries such that common modeling assumptions would be vio-
lated (e.g., ageing error, fisheries catchability changes, kill
under-reporting, and age selectivity changes). These studies
produced relatively few simulated data sets, with detailed as-
sessments developed by analysts familiar with the different
methods. While these studies provided a realistic assessment
of how well different analytical approaches and their practi-
tioners could perform on specific simulated data sets, they
did not provide general guidance on the applicability of KAA
and VPA under a range of different conditions. Punt et al.
(2002) compared KAA, several variants of VPA, and several
other methods in an extensive simulation study. The model
they used to generate simulated data was moderately com-
plex, being spatially, size-, and age-structured, allowed for
technological interactions, and was parameterized to reflect
assumptions specific to four fisheries. Their generating mod-
els did not match the assumptions made by any of the esti-
mating models, as they assumed that total yield was measured
without error (although total weight of fish killed had some
error because discard was assumed to be measured with er-
ror), and their comparisons were based on short (8-year)
simulated time series. They found that the KAA estimator
generally outperformed VPA, although not always.

The objective of our study was to probe the benefits and
shortcomings of several variants of KAA and one implemen-
tation of forward VPA (FVPA) in the presence of varying
levels of measurement error and fishing mortality. The use-
fulness and reliability of each approach was tested using
simulation studies, in which the assessments were done in an
automated and standard way on simulated data sets. Our
simulations were based on the recreational-dominated walleye
(Sander vitreus) fishery of Lake Mille Lacs, Minnesota, and
should provide useful guidance for both recreational and
commercial fisheries.

We were particularly interested in comparing the relative
performance of a VPA method and KAA, when in fact kill
was measured with appreciable error. Our intent was to docu-
ment the trade-offs between the assumption of known catch-
at-age in VPA and the selectivity assumptions in KAA. Con-
sequently we sought to minimize other differences between
VPA and the KAA methods. We therefore chose a FVPA im-
plementation, which uses a statistical approach and which
does not constrain terminal fishing mortality rates through
linkage assumptions. We recognize that linkage assumptions
can improve estimation by VPA, depending in part on how
well the assumed constraints reflect that actual fishing pro-
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cess. However, use of such procedures in our simulations
would have confounded our intended comparison by includ-
ing additional assumptions regarding selectivity in the VPA
method. Our use of a statistical FVPA approach also allowed
us to handle survey data and estimate survey catchability in
the same way as was done by the KAA methods.

Given that KAA replaces the assumption of known kill
with assumptions regarding selectivity, simulated data were
generated making different selectivity assumptions and our
variants of KAA modeled selectivity in different ways. Thus,
we also evaluated the performances of KAA assessment mod-
els when their selectivity models were misspecified. Our
systematic comparison of methods in the face of different
levels of measurement error combined with different degrees
of model misspecification is a unique contribution of this
study.

Methods

We simulated population dynamics, expected kill-at-age,
and expected gillnet survey indices of abundance based on
our understanding of the recreational-dominated walleye fish-
ery of Lake Mille Lacs. We added measurement error to
the expected kill-at-age and age-specific indices of abun-
dance to generate simulated data sets. We fitted a suite of
age-structured estimation models to each simulated data set.
In generating simulated data, we varied fishing mortality
rates, measurement error associated with the kill-at-age data,
measurement error associated with the survey, and assump-
tions about selectivity (and the degree of separability) of the
fishery to evaluate how these factors influenced the relative
performance of the different estimating models. Equations
defining the simulation model are presented in Appendix A,
and symbols used in the simulation model and in estimation
models that are not defined in the text are given there. Equa-
tions in Appendix A are denoted as Ax. Where equivalent
quantities are used in the estimation models, as in the simu-
lation model, they are not redefined, and estimated quantities
are distinguished from simulated ones by placing a carat
over the symbol.

Simulation model
Our generating model assumes a single fishery and single

survey with characteristics like those of the recreational fish-
ery and gillnet survey, respectively, on Lake Mille Lacs.
Lake Mille Lacs is a 54 000-ha glacial lake in central Minne-
sota, and among large lakes in the state, it is the most produc-
tive for walleye (3.6 kg·ha–1·year–1). Although annual fish
quotas have been set to allocate the total allowable kill
between state-licensed sport anglers and Ojibwe Indian net-
ters and spearers since 1997, the fishery kill has been domi-
nated by the sport fishery over the time period used in age-
structured assessments (Radomski 2003). The sport fishery
has been monitored by annual creel surveys since 1983, and
estimates of fishery kill-at-age have substantial measurement
error (kill coefficient of variation (CV) greater than 10%).
Fish populations are also annually monitored with gillnet,
electrofishing, and trawl assessment surveys. The gillnet sur-
vey provides the longest time series and is the most exten-
sive of these fishery-independent data sources, and relative

abundance estimates have substantial measurement error
(survey CV greater than 20%).

The population model covers 21 years, from year 1 to
year 21, and produces simulated, “actual” abundances at the
start of each year for ages 1 through 9 and a 10+ group.
Abundance at age-1 (recruitment) in years 2 through 21 and
abundance at all ages in the first year took the same values
in each simulation, based on estimates of these quantities
from age-structured assessment models of the Lake Mille
Lacs walleye fishery. Subsequent abundances for ages (a) 2
through 9 and years (y) 2 through 21 follow a standard de-
terministic mortality model (Appendix A). In our experi-
ments, we considered three scenarios for fishing mortality
on fully selected ages (Fy). The status quo pattern was based
on fishing mortality rates estimated for the Lake Mille Lacs
walleye fishery in past assessments. We also considered two
other fishing mortality scenarios, which we think come close
to spanning the range that managed walleye fisheries are
likely to experience. The low fishing mortality scenario had
fully selected fishing mortality set to half of those in the sta-
tus quo option. The high fishing mortality scenario had status
quo rates through year 13 and a linearly increasing fishing
mortality on fully selected ages over the subsequent years
(Table 1).

We generated data from a model in which fishing mortality
was fully separable into year and age effects (i.e., constant se-
lectivity Sa,y = Sa) and from three models that deviated from
full separability (Appendix A and Fig. 1). The first alterna-
tive, time-blocked selectivity, was where the selectivity pat-
tern changed every 5 years, but was constant within 5-year
time blocks. The next alternative was a nonadditive model
with selectivity varying as a function of fishing mortality
(Myers and Quinn 2002). Finally, random variability was
added each year to a base selectivity pattern. Annual vari-
ability was chosen to be larger for younger ages and of a
magnitude to create real contrast in annual selectivity (as
shown in Fig. 1). The constant selectivity pattern was dome-
shaped and based on stock assessment results for the Mille
Lacs Lake walleye fishery (Fig. 1). This same selectivity
pattern also served as the base pattern for the nonadditive
and randomly varying selectivity models and was the selec-
tivity pattern for the first time block in the time-blocked se-
lectivity model. Selectivity for the remaining three blocks
was selected to provide contrast in the simulation results,
with increased selectivity at most older ages for each suc-
ceeding time block.

Observed data for kill-at-age and survey indices-at-age
were simulated for years 1 through 20 and years 1 through
21, respectively. Based on modeled abundance and mortality
rates, actual numbers killed at age were calculated from the
Baranov catch equation (eq. A8). Observed kill-at-age with a
median equal to the actual kill was generated by multiplying
this kill by a lognormal measurement error term (eq. A9).
(Preliminary simulations, using a bias correction factor, set
the mean of observed kill equal to actual kill and produced
qualitatively similar results.) Gillnet survey indices of abun-
dance were simulated similarly, assuming that the indices
were proportional to actual abundance at age, up to a multi-
plicative lognormal measurement error (eq. A10). The pro-
portionality constants, or catchabilities, were constant over
time, but age-specific (Table 1). The kill-at-age and survey
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indices of abundance at age errors were generated independ-
ently among ages and years, in accord with the assumptions
of widely used least-squares fitting approaches.

Estimating models
We developed a single FVPA model and three statistical

KAA models using standard methods (Quinn and Deriso
1999). For all the KAA models, the abundances at age in the
first year and abundance at age 1 in subsequent years 2
through 21 were estimated as parameters during fitting of
the models. The subsequent dynamics of each cohort are de-
scribed by eqs. A1 through A3, with model-estimated quan-
tities substituted for the true values. In all cases, M was
assumed known and took the correct values (Table 1).

In each model, estimated or predicted kill-at-age was cal-
culated from eq. A8 with known quantities replaced by
model estimates and predicted survey indices of abundance
by �

�

�I q Na y a a y, ,= (i.e., eq. A10 with model estimates replac-
ing true values and the error term dropped). Survey
catchability (qa) was estimated for ages 1–9, and catchability
of the group 10+ was assumed correctly to be equal to the
catchability of age 9.

The KAA models differed in how fishing mortality was
modeled. The first KAA estimating model assumed constant
selectivity over time (eq. A4). The second estimated selec-
tivity in 5-year blocks (eq. A5). The third KAA model
included estimation of the one degree of freedom for the
nonadditivity parameter (Myers and Quinn 2002). Thus,
each of the estimating models matched one of the models

used to generate the simulated data. For the constant
selectivity model and the time-blocked selectivity model, se-
lectivity at ages 4 and 5 was set to 1, and Fy was estimated
for each year 1 through 20. Selectivity for ages other than 4
and 5 was estimated either for the entire assessment period
(constant selectivity model) or for each time block (time-
block model). For the nonadditive model, eqs. A3 and A6
were reparameterized as suggested by Myers and Quinn
(2002) to describe ln(Fa,y) by

(1) f f f sa y y a
y fy

,
~ ~= + + +1

so that in addition to γ, f ,
~
fy (constrained to sum to 0), and

~sa (constrained to sum to 0) were estimated instead of Fy
and Sa. The KAA constant selectivity model had 67 parame-
ters (9 parameters for population at age >1 for the first year,
21 parameters for population at age 1, 20 fishing mortality
parameters (Fy), 8 selectivity parameters (Sa), and 9 parame-
ters for survey catchability qa); the time-block model had 91
(9 parameters for population at age >1 for the first year, 21
parameters for population at age 1, 20 fishing mortality pa-
rameters, 32 selectivity parameters, and 9 parameters for qa);
and the nonadditive model had 71 parameters (9 parameters
for population at age >1 for the first year, 21 parameters for
population at age 1, 21 fishing mortality parameters, 11 se-
lectivity parameters, and 9 parameters for qa).

In each case, the parameters of the KAA models were esti-
mated numerically by minimizing the weighted sum of
squares:
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Year-specific Age-specific

Year
Recruitment
of age 1

Status quo
scenario

Fishing mortality
scenario Age

Population
at year 1

Natural
mortality rate

Survey
catchability

High Low

1 565 088 0.25 0.25 0.12 1 565 088 0.80 2.817×107

2 5 914 862 0.13 0.13 0.06 2 1 080 982 0.45 1.735×106

3 273 807 0.28 0.28 0.14 3 127 276 0.24 4.374×106

4 460 370 0.26 0.26 0.13 4 165 449 0.24 6.751×106

5 2 093 396 0.44 0.44 0.22 5 1 119 917 0.24 8.493×106

6 8 863 597 0.23 0.23 0.11 6 148 893 0.24 1.222×105

7 956 742 0.36 0.36 0.18 7 143 264 0.24 1.277×105

8 799 512 0.31 0.31 0.15 8 50 421 0.24 1.513×105

9 3 424 054 0.55 0.55 0.28 9 33 191 0.24 1.589×105

10 2 402 837 0.41 0.41 0.20 10+ 44 814 0.24 1.589×105

11 2 062 625 0.13 0.13 0.06
12 1 596 742 0.24 0.24 0.12
13 1 284 108 0.29 0.29 0.14
14 1 402 466 0.17 0.34 0.08
15 478 640 0.21 0.39 0.10
16 627 093 0.36 0.44 0.18
17 1 890 010 0.19 0.49 0.09
18 1 726 248 0.26 0.54 0.13
19 5 283 640 0.29 0.59 0.14
20 313 023 0.38 0.64 0.19
21 1 474 974

Note: Year-specific parameters included a set of recruitments that were used for every simulation and trajectories of fully selected
fishing mortality. Age-specific parameters included the abundance at age in the first year and natural mortality and survey
catchability. Selectivity is shown in Fig. 1.

Table 1. Parameter values used in the simulator.



(2) RSS RSS RSS= +( ) ( )K Sλ

RSS (ln *
,

,

( ) ln � ),K Ka y
a y

a y= −∑ K 2

(3) RSS (ln *
,

,

( ) ln � ),S Ia y
a y

a y= −∑ I 2

where λ is a weighting term and RSS represents the objec-
tive function.

For the FVPA estimating model, the initial abundances of
each cohort (abundances-at-age in the first year) and subse-

quent recruitment at age-1 were estimated as parameters. For
computational efficiency, Pope’s (1972) approximation was
used to project subsequent abundances:

(4) � � exp( ) * exp( / )N N M K Ma y a y a a y a+ + = − − −1 1 2, , ,

and

(5) � � exp( ) * exp( / ), , ,N N M K My y y10 1 10 10 10 10 2+ + + + + += − − −

+ − − −� exp( ) * exp( / )N M K My y9 9 9 9 2, ,

As with the KAA methods, the correct natural mortality
rates were assumed to be known. The FVPA model had 38
parameters directly estimated (9 parameters for population at
age >1 for the first year, 20 parameters for population at age
1, and 9 parameters for qa). The additional 200 fishing mor-
tality rates were calculated by solving eqs. A1 and A2.

The survey indices of abundance were predicted, as for
the KAA models, by �

�

�I q Na y a a y, ,= . As with the KAA mod-
els, it was assumed that 10+ age group survey catchability
was equal to the catchability of the age 9 group. The param-
eters (abundance-at-age in the first year, recruitment in sub-
sequent years, and the survey catchabilities (excluding the
10+ group)) were estimated by numerically minimizing
RSS(S), as expressed in eq. 3. The FVPA estimating model
was constrained so that population at age and resulting fish-
ing mortality for age values could only be positive.

The estimations were performed using the Solver routine
in Microsoft® Excel (Microsoft Corporation, Redmond,
Washington). To assure that the software performed properly,
we replicated experiment 1 (see below) using AD Model
Builder (Otter Research Ltd., Sidney, British Columbia). We
also compared parameter estimates from both software prod-
ucts when presented identical test data sets. Both software
products produced similar results, providing partial valida-
tion of the simulation results.

Experimental design
For each combination of fishing mortality, survey and kill

CVs, and selectivity model, we generated 100 simulated data
sets and fitted a suite of assessment models to each data set.
Preliminary testing suggested that 100 simulations produced
estimates for parameters of error distributions sufficiently re-
liable for our purposes, and we subsequently verified this by
bootstrapping (see “Evaluating the performance of the esti-
mating models”). To evaluate retrospective patterns, we re-
fitted the assessment models to each data set four additional
times as the last 4 years of data were deleted sequentially
starting with the last year. Unless stated otherwise, the value
of λ in eq. 2 for the KAA estimators was set to the ratio of
variances of kill and survey (log scale) used to generate sim-
ulated data. Thus, we usually assumed that the KAA analyst
is aware of the relative magnitudes of variances associated
with the kill and survey data. For example, if the kill error
had a CV of 5% and the survey error had a CV of 25%, then
the weighting on survey residual sum of squares was set at
about 0.04 (for a lognormal variable, the log-scale standard
deviation is approximately equal to the CV).

Five experiments were conducted. Experiment 1 was in-
tended to guide the design of additional simulation experi-
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Fig. 1. Fishery selectivity patterns used in generating simulated
data. (a) Base selectivity pattern C and selectivity patterns (B)
used for time blocks two through four. (b) Selectivity pattern N
in low (L) and high (H) fishing mortality years (Fy = 1/2 f or =
2 f ) for the nonadditive model with Tukey’s nonadditivity pa-
rameter (γ) of –0.3, –0.1 and 0.3. (c) Five outcomes from the
random selectivity model R.



ments and provide results for FVPA and KAA models over
a wide range of error variances in the data, when the separa-
ble fishing mortality model was correct. The design of this
experiment was a factorial cross of kill CV (0%, 5%, 25%,
50%) and survey CV (0%, 5%, 25%, 50%). Simulated data
were generated using constant kill selectivity following the
base pattern and status quo exploitation (Table 1). The value
of λ in eq. 2 for the KAA estimator was set to the ratio of
variances of kill and survey (log scale), except for when
only kill CV = 0% (λ = 0.001), when only survey CV = 0%
(λ = 1000), and when both kill and survey CV = 0% (λ = 1).
In this experiment, the KAA method was faced only with
measurement error. Here (and in our other simulations),
FVPA can be viewed as being misspecified except when the
actual kill CV was zero, since the assumption of no error in
the kill data is incorrect.

Experiment 2 generated data from the constant selectivity
model using the base selectivity pattern (Table 1), and thus
the KAA method again only faced measurement error. The
experiment was intended to explore how fishing mortality
might interact with different levels of measurement error to
influence the relative performance of KAA and FVPA as-
sessments, when the KAA model was correct. It followed a
factorial design that varied fishing mortality (low, status quo,
and high), kill CV (5% and 25%), and survey CV (25% and
50%). As in experiment 1, FVPA and the KAA estimator
that assumed a constant kill selectivity were applied to each
resulting data set. We used the results of this experiment to
define a reasonable but more restricted range of these factors
for which to evaluate the alternative estimators when the as-
sumption of separability was violated in later experiments.

Experiment 3, our main experiment, was also factorial,
including the type of selectivity pattern (time-blocked, non-
additive (γ = –0.1), and random year-to-year variation), kill
CV (5% and 25%), and fishing mortality (status quo and
high). Survey CV was 25% in these simulations. All four
estimating models were used (FVPA and the three KAA
models). Thus, in this experiment the KAA methods were
faced with measurement error alone and in combination with
model misspecification. Our intent here was to evaluate the
relative performance of the different methods when selec-
tivity was no longer constant. We were particularly inter-
ested in how various misspecifications of the selectivity
pattern would degrade the performance of the different
KAA methods and how they would now perform relative to
the FVPA.

Experiment 4 was designed to evaluate how more extreme
nonadditive fishing mortality than that used in experiment 3
affected assessment performance. The γ parameter, control-
ling how selectivity varied in response to fishing mortality for
the nonadditive model (eq. A6), was set to two values (–0.3,
0.3) and crossed with fishing mortality (status quo and high)
in a factorial design. All four estimation models were fitted to
each data set, and all simulations used a kill CV of 25% and a
survey CV of 25%. An additional level of γ (–0.1) is available
from the results of experiment 3 for these same combinations
of the other factors. Here, all methods except the nonadditive
KAA faced both measurement error and model misspecifi-
cation.

Experiment 5 evaluated the consequences of setting λ = 1
in the objective function (eq. 2) for the KAA models, a com-

mon approach when variances are not known, rather than to
the ratio of the log-scale variances. Simulations were done
with the altered objective function, using the time-blocked
selectivity models crossed with two levels of measurement
error ((i) kill CV = 5%, survey CV = 25%, λ = 0.04 and
(ii) kill CV = 25%, survey CV = 50%, λ = 0.25). Because
survey CV was greater than kill CV in these simulations,
setting λ = 1 has the effect of increasing the emphasis on the
survey data relative to the kill data. A status quo fishing
mortality rate was used in these simulations, and the three
KAA estimating models were fitted to each data set. Results
from experiment 3 provide comparative results for the lower
level of measurement error, when λ was set to the ratio of
the log-scale variances. Here, all but the time-blocked KAA
models were misspecified both for the new simulations and
the comparative cases from experiment 3. All the KAA
models can be viewed as misspecified for the simulations
with λ = 1, since incorrect relative variances are being as-
sumed.

Evaluating the performance of the estimating models
The purpose of most stock assessments is to generate es-

timates of population parameters from the most recent time
period. We evaluated the performance of the estimators
based primarily on the distribution of relative errors in
spawning biomass at the start of year 21 and on the distri-
bution of relative errors in exploitation (ages 2 and older)
during year 20. For the calculation of spawning biomass,
mean weight-at-age and maturity schedules from Lake
Mille Lacs were used. Relative error is defined as the per-
centage r = (estimated – true)/true × 100 for each quantity
for a given simulation. In addition to plotting distributions
of these relative errors, we also summarized overall perfor-
mance by the median of the relative error distribution
(MRE) and by the median of the absolute values of the
relative errors (MARE). We used MRE to indicate median
relative bias, the tendency to consistently underestimate or
overestimate. We used MARE to summarize the uncertainty
or imprecision in the estimates. We used MRE instead of
mean relative error and MARE instead of root mean square
error because we encountered occasional extreme outliers
(positive errors for spawning biomass) that required use of
these robust statistics. For all combinations of generating
models, estimating models, and error levels represented in
our experiments, we calculated bootstrap standard errors
(SE) for MARE and MRE for both spawning biomass at
the start of year 21 and exploitation during year 20 (based
on 1000 bootstrap samples in each case). We examined
plots of these SEs versus the absolute values of MRE or
versus MARE to gauge our ability to distinguish differ-
ences.

In addition, we examined time trends in relative errors for
exploitation and spawning biomass and examined retrospec-
tive patterns in these variables (Parma 1993), although we
present these time trend results only for selected cases.

Results

Uncertainty in estimates of MRE and MARE was evalu-
ated by calculating SEs based on bootstrap sampling. For
both spawning biomass at the start of year 21 and exploita-
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tion in year 20, the SEs for MRE were usually well below 5.
For exploitation, the maximum estimated SE was 7, which
occurred for an absolute MRE of 18. For spawning biomass,
SEs exceeded 7.5 in only two cases, taking a value of 16 for
an absolute MRE of 20 and an SE of 24 for an absolute
MRE of 120. Thus, we focus on differences in MRE of 10
or more or smaller differences representing general patterns
in the results. SEs for MARE were more closely tied to the
estimated magnitude of MARE, generally being about 10%
of the MARE for both spawning biomass and exploitation.
Thus, in the case of MARE we focus on differences on the
order of 20% of the larger value being compared or general
patterns for smaller differences.

Experiment 1 generated data from a purely separable model
with constant selectivity, over a range of kill and survey er-
rors, and with the status quo fishing mortality pattern. Not
surprisingly, both the FVPA and KAA estimators generally
performed better (MRE closer to zero, MARE smaller) when
kill and survey CVs were lower (Table 2). The KAA model
outperformed FVPA for all combinations of kill and survey
CVs (Table 2). The difference in performance was due to
both spread of the error distributions and how close the dis-
tributions were to being centered on zero. KAA estimates
had MRE near zero under all conditions, whereas FVPA had
MRE substantially above zero for spawning biomass and
substantially below zero for exploitation when kill CV =
25%.

With no error in the kill, both KAA and FVPA were cor-
rectly specified, yet under these conditions FVPA still had
higher MARE than KAA (Table 2). Not surprisingly, with
no measurement error, FVPA had MRE that diverged only
slightly from zero (<1 in absolute value) because of the use
of Pope’s approximation. With no or little (CV = 5%) error
in the kill, there is no clear pattern for MRE to increase with
increasing survey error. Thus the larger MARE for FVPA
than for KAA under these conditions (especially when sur-
vey CV = 25%) reflects a broader distribution of errors for
FVPA. This can be viewed as a cost incurred by VPA for ef-
fectively estimating more quantities than are needed to de-
scribe fishing mortality patterns.

Misspecification by FVPA that there is no error in the kill
led to even poorer performance relative to KAA when there
was substantial error in the kill. At high kill CV (25% and
50%), the FVPA estimator’s high positive MRE for spawn-
ing biomass is the dominant influence on MARE, although
FVPA still had broader distributions of errors than KAA. For
FVPA, the movement of the center of the distribution away
from zero is the primary cause for the increase in MARE
with increasing error in the kill (Table 2); error distributions
only became modestly broader (data not shown).

Experiment 2 also generated data from a purely separable
model with constant selectivity, but used a range of fishing
mortality and two sets of CV values for fishery kill and sur-
vey index data (5%, 25% versus 25%, 50%). Results gave
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KAA-C FVPA

Survey CV Survey CV

Kill CV 0 5 25 50 0 5 25 50

Spawning biomass MRE
0 0.00 –0.18 –0.17 –0.21 0.75 0.38 –0.33 1.94
5 0.14 –0.40 –0.09 –1.73 1.40 0.96 0.26 2.02
25 0.36 –0.98 –1.11 0.43 15.76 16.06 15.93 24.18
50 0.61 –0.70 –2.11 0.63 83.34 84.79 102.62 119.53

Spawning biomass MARE
0 0.00 0.18 0.52 0.96 0.75 1.80 9.67 19.14
5 0.40 1.88 4.55 5.86 1.52 2.35 10.26 19.06
25 2.10 3.43 9.42 14.87 15.76 16.06 17.11 26.95
50 3.93 5.01 10.64 18.82 83.34 84.79 102.62 119.53

Exploitation rate MRE
0 0.00 0.14 0.14 0.17 –0.75 –0.65 –0.51 –1.39
5 –0.09 0.53 0.20 1.41 –0.96 –1.36 –1.43 –1.37
25 0.14 1.83 2.15 2.77 –7.41 –7.79 –9.89 –13.66
50 0.20 2.16 3.36 2.55 –33.49 –33.89 –38.62 –43.44

Exploitation rate MARE
0 0.00 0.15 0.41 0.78 0.75 1.49 7.31 15.11
5 0.18 1.71 3.83 5.07 1.79 2.48 8.65 14.86
25 0.78 4.32 8.90 11.57 9.59 11.15 16.04 21.93
50 1.52 6.41 11.33 17.32 33.49 33.89 39.87 44.02

Note: Median relative error (MRE) and median absolute relative error (MARE) of estimates of the most recent
spawning biomass and exploitation rate are given as a function of increasing kill and survey error (kill coefficient of
variation (CV) = 0%, 5%, 25%,and 50%; survey CV = 0%, 5%, 25%, and 50%) with the status quo exploitation pat-
tern and constant kill selectivity in the simulation model.

Table 2. Comparison of forward virtual population analysis (FVPA) and a statistical kill-at-age model
(KAA-C) that assumed constant selectivity over time in experiment 1.



the same general picture as was seen in experiment 1 (Ta-
ble 3). Not surprisingly, MARE decreased with decreases in
fishery or survey CV or with increases in fishing mortality.
The FVPA estimator always performed less well than the
KAA estimator for all levels of fishing mortality and error
variance. The magnitude of change in MARE in response to
these factors was greater for FVPA than KAA. In addition to
the larger MARE, the somewhat surprising tendency for
FVPA to have positive relative errors (as indicated, for ex-
ample, by MRE) in spawning biomass and negative relative
errors in exploitation was evident when kill CV was 25% for
all levels of fishing. As in experiment 1, the improved per-
formance of FVPA when kill CV was lower was largely
because the distributions of relative errors tended to be cen-
tered closer to zero.

The main experiment, experiment 3, generated data based
on different assumptions about how selectivity varied over
time. The type of temporal variation in selectivity had a
large influence on the relative performance of the different
estimating models, and this interacted strongly with the kill
CV (Table 4; Figs. 2 and 3). When selectivity varied over
time, following either the nonadditive model or 5-year time
blocks, KAA estimating models that made the correspond-
ing assumption about selectivity performed relatively well,
in the sense that MRE was near zero and MARE was either
the lowest or near the lowest among the estimators that
were considered. When the kill CV was 5%, mis-
specification by the KAA estimators in how selectivity

changed over time led some estimators to have strong ten-
dencies to either over- or under-estimate spawning biomass
and exploitation rate (Figs. 2a, 2c, 3a, 3c). This was most
notable for the nonadditive and constant selectivity estima-
tors when actual selectivity varied in 5-year time blocks
and also for the constant selectivity estimator when actual
selectivity was nonadditive (γ = –0.1). Differences among
the KAA estimators were substantially less pronounced
when the kill CV was 25% (e.g., Fig. 3a versus Fig. 3b),
suggesting misspecification of selectivity is of less conse-
quence when kill is measured with more error and that higher
error rate is acknowledged.

As in experiments 1 and 2, the FVPA estimator generally
produced a broader distribution of relative errors (Figs. 2
and 3) than the KAA estimators. In agreement with the ear-
lier experiments, the FVPA estimator tended to produce pos-
itive errors in spawning biomass and negative errors in
exploitation when the kill CV was 25% (Figs. 2 and 3). The
broad distribution, combined with a tendency to overestimate
spawning biomass, caused FVPA to have higher MARE than
any of the KAA estimators when kill CV was 25% (Ta-
ble 4). A notable exception to the broader distribution for er-
rors from FVPA was that all the KAA estimators produced
nearly as broad or broader distributions of errors when selec-
tivity varied randomly from year to year and the kill CV was
5%. Under these conditions, the misspecification of selectiv-
ity by the KAA models outweighed benefits of their parsi-
mony and allowance for error in the kill. For this situation,
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KAA-C FVPA

Fishing mortality Fishing mortality

Kill CV, survey CV (%) Low Status quo High Low Status quo High

Spawning biomass MRE
5, 25 0.44 –0.09 –1.45 1.07 0.26 1.08
5, 50 0.68 –1.73 –1.12 –2.21 2.02 2.45

25, 25 0.67 –1.11 –0.76 23.32 15.93 13.15
25, 50 2.50 0.43 –1.99 19.92 24.18 16.00

Spawning biomass MARE
5, 25 7.69 4.55 4.55 17.33 10.26 9.88
5, 50 9.62 5.86 6.06 34.45 19.06 17.25

25, 25 16.67 9.42 8.85 28.45 17.11 14.10
25, 50 26.82 14.87 12.72 42.25 26.95 20.84

Exploitation rate MRE
5, 25 –0.07 0.20 0.47 –0.84 –1.43 –2.71
5, 50 2.78 1.41 0.96 8.74 –1.37 –5.84

25, 25 –1.45 2.15 1.64 –18.62 –9.89 –7.07
25, 50 –1.54 2.77 1.92 –17.79 –13.66 –12.69

Exploitation rate MARE
5, 25 6.64 3.83 2.78 13.00 8.65 7.10
5, 50 9.52 5.07 4.05 29.22 14.86 12.85

25, 25 15.10 8.90 5.88 24.69 16.04 13.83
25, 50 25.31 11.57 8.78 40.28 21.93 18.84

Note: Median relative error (MRE) and median absolute relative error (MARE) of estimates of the most recent
spawning biomass and exploitation rate are given as a function of fishing mortality (low, status quo, and high), kill
coefficient of variation (CV) (5% and 25%), and survey CV (25% and 50%). Constant kill selectivity was operative.

Table 3. Comparison of forward virtual population analysis (FVPA) and a statistical kill-at-age model
(KAA-C) that assumed constant selectivity over time in experiment 2.



the resulting MARE for FVPA was comparable to that of the
best KAA models. For other cases with kill CV = 5%,
FVPA did not always have higher MARE than the KAA es-
timators because of the substantial divergence of MRE from
zero for some of the KAA estimators.

There was no clear best omnibus estimator over the range
of generating models and variables considered in experiment
3. When selectivity was in fact constant, both the time-
blocked and nonadditive estimators performed as well or
nearly as well as the constant selectivity estimator (Table 4).
When the CV in kill was 25%, there was little difference in
the performance among the KAA estimators, and all were
superior to FVPA (Table 4). When the kill CV was 5%, the
time-blocked estimator generally had lower MARE than
FVPA when selectivity changes were sustained over a period
of time (either constant within a time block or gradual re-
sponses to nonadditive fishing mortality). FVPA became a
competitive estimator only when kill CV was 5% and varia-
tions in selectivity were erratic (random) from year to year.

In experiment 4, we further explored the consequences of
nonadditive selectivity by generating data from the nonaddi-
tive model setting γ to –0.3 or 0.3, instead of –0.1. The dis-
tributions of relative errors for the different estimating
models depended jointly on the degree of nonadditivity and
the variable being considered. Again, the estimator with cor-
rectly specified selectivity (nonadditive) performed well,
with relatively narrow error distributions centered near zero
leading to low MARE (Table 5). The time-blocked selectiv-
ity estimator tended to produce narrow distributions of er-

rors, but these tended to be positive when γ < 0 and negative
when γ > 0. These factors combined so that the time-blocked
estimator often had MARE nearly as small as or smaller
than the nonadditive estimator. The constant selectivity esti-
mator generally performed relatively poorly (larger MARE)
compared with the other KAA estimators. This was particu-
larly evident when γ < 0 and for spawning biomass. Large
values of MARE were largely the result of MRE diverging
from zero for this estimator, taking positive and negative
values (for spawning biomass) when γ was negative or posi-
tive, respectively. Relative errors in FVPA estimates of
spawning biomass had a wide distribution, and as in other
experiments there was a tendency for positive relative errors.
As a consequence, MARE was generally nearly as large or
larger for FVPA than for the worst of the KAA estimators
(Table 5). Relative performance of the estimators was gener-
ally similar for exploitation as for spawning biomass, with
the pattern in MRE being reversed (Table 5).

In experiment 5, we used the time-blocked selectivity gen-
erator to evaluate the consequences of specifying weights
that were not proportional to the inverse of the variances as-
sociated with the kill and survey data, but were instead arbi-
trarily set to 1 for both data sources. The procedures were
somewhat robust to the choice of weights when the CVs
were 25% and 50% for the kill and survey, respectively. In
this case, the estimators had similar MARE for spawning
biomass when weighted correctly, and this remained roughly
the same when weights were set equal (Table 6). For exploi-
tation rate, the time-blocked estimator (which correctly mod-
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Estimating model

Kill CV = 5% Kill CV = 25%

Fishing mortality Selectivity V C B N V C B N

Spawning biomass MARE
Status quo C 10.26 4.55 4.62 5.84 17.11 9.42 9.03 9.63
Status quo B 8.28 37.25 7.93 34.20 10.34 9.43 8.27 9.07
Status quo N 10.17 25.86 8.86 6.55 18.79 9.34 9.69 9.99
Status quo R 10.77 11.26 8.83 17.39 18.16 10.32 9.44 10.01
High C 9.88 4.55 4.91 5.00 14.10 8.85 8.62 9.76
High B 6.63 34.34 5.82 33.03 9.96 6.27 7.36 6.97
High N 9.72 43.63 11.83 5.15 15.17 9.91 9.78 8.78
High R 10.31 14.13 11.67 15.47 14.90 9.94 10.38 10.50

Exploitation rate MARE
Status quo C 8.65 3.83 3.84 4.36 16.04 8.90 8.11 8.66
Status quo B 6.92 46.58 5.34 43.67 11.76 11.77 5.68 12.07
Status quo N 8.98 13.61 5.52 4.57 16.72 9.30 8.86 8.03
Status quo R 9.03 8.47 7.37 13.04 16.83 9.88 9.03 9.64
High C 7.10 2.78 2.90 3.16 13.83 5.88 6.42 5.91
High B 5.30 36.91 3.04 36.07 10.52 8.09 5.39 8.68
High N 7.57 15.72 5.02 3.18 14.50 7.45 6.81 5.99
High R 6.90 9.13 6.98 9.17 13.85 7.28 7.44 7.74

Note: Forms of the selectivity pattern were time-blocked (B), constant kill selectivity (C), nonadditive with Tukey’s
nonadditivity parameter (γ) set to –0.1 (N), and random year-to-year variation (R). Kill coefficient of variation (CV)
was either 5% or 25%, and survey CV was always 25%. Fishing mortality was either status quo or high. Estimating
models were V for forward virtual population analysis, C for the statistical kill-at-age model (KAA) that assumed con-
stant kill selectivity over time, B for KAA that estimated selectivity in 5-year blocks, and N for KAA that included
the estimation of the one degree of freedom for nonadditivity parameter.

Table 4. Results from experiment 3 of median absolute relative error (MARE) of estimates of the most
recent spawning biomass and exploitation rate.
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eled selectivity) had lower MARE than the other estimators
both with the correct weighting and with equal weighting.
However, when data were weighted equally, MARE for this
estimator increased, whereas MARE for the other estimators
decreased (Table 6). For the case where CVs were 5% and
25% for kill and survey, respectively, there was a much
stronger interaction between the weighting and whether the
selectivity model was correct or not. For the correct time-
blocked estimator, MARE changed little when weighting
was changed from correct to equal. However, for the other
estimators, when weighting was correct MRE differed
greatly from zero, and this difference decreased substantially
when weighting was equal (Table 6), leading to smaller
MARE. Thus, underweighting kill data actually improved
performance of estimators that misspecified selectivity.

Temporal patterns
Heretofore, our evaluation of the relative performance of

the different estimating models was based on results ob-
tained for the last year. In general, these results reflected
performance over the entire time period modeled. For exam-
ple, considering experiment 3 (Table 4, Fig. 3), MRE and
MARE of spawning biomass for the first year modeled were
highly related to the same quantities for the last year
(Fig. 4), although there was a general tendency for MRE to

be closer to zero in the first year, especially for the most ex-
treme departures from zero. There was a general tendency
for the MARE to be less in the first year than in the last
year, reflecting tighter distributions of errors in earlier years
and MRE closer to zero.

There was a notable exception to the observation that per-
formance of an estimator in the last year was indicative of
performance over the time course of the assessment. For the
time-blocked generating model, the constant-selectivity esti-
mator produced very strong temporal trends in MRE, illus-
trated again using spawning biomass from experiment 3
(Fig. 5). Although not illustrated, the nonadditive estimator
produced very similar temporal patterns in MREs for this
case. The result was strong retrospective patterns. Estimates
based on sequentially leaving out years of data starting from
the last year produced MREs that increasingly diverged from
zero after year 10 (Fig. 6). Interestingly, the magnitude of
retrospective errors in Fig. 6 is greater when the kill CV is
lower (5% versus 25%), indicating again that greater error in
the kill-at-age data ameliorates some of the bias in KAA
caused by misspecification of the selectivity model.

Discussion

A general statistical principle is that the accuracy and pre-

Fig. 2. Box plots of relative error distributions from experiment 3 for exploitation rate in year 20, for (a) status quo fishing mortality
(F) and kill coefficient of variation (CV) of 5%, (b) status quo F and kill CV of 25%, (c) high F and kill CV of 5%, and (d) high F
and kill CV of 25%. Boxes denote the interquartile range, and the vertical lines end at the furthest data point not longer than 1.5 times
the interquartile range. Treatments are indicated on the x axes as xy, with x taking values of V, C, B, or N and y taking values of C,
B, N, and R. x, estimating model; y, generating model; C, constant selectivity; B, blocks of selectivity; N, nonadditive selectivity; R,
random variations in selectivity; V, forward virtual population analysis.



cision in parameter estimation are strongly dependent on the
variability in the data sources used: higher input variability
should lead to higher output variability. Thus, in this study it
is not surprising that increased variability in data inputs of-
ten led to increased variability in model outputs, particularly
in the absence of model misspecification. In some scenarios,
we found that distributions of errors were not centered on
zero; in other scenarios, the median error became closer to
zero when we added an additional source of model mis-
specification. Some of these results did not match our a priori
expectations. These patterns were related to model misspeci-
fication and the interaction of such misspecification with
levels of measurement error, which can have somewhat sur-
prising effects in models as complex as fishery catch-at-age
stock assessments.

Generally, failure to meet underlying assumptions (model
misspecification) led to large median errors in our results.
For example, we found high positive median error for popu-
lation size with the FVPA estimator under high kill CV. This
estimator assumed incorrectly that kill-at-age is measured
without error. Similarly, we saw that large errors could occur
in KAA models when selectivity was misspecified. Interest-
ingly, in the presence of such model misspecification, greater
errors could occur with lower data measurement error for the
kill. For example, when selectivity was not constant, the
constant selectivity estimator had larger error with lower

measurement error. This occurred because the RSS(K) had
more influence in the objective function with smaller kill
measurement errors. In fact, we found in experiment 5 that
just specifying an incorrectly higher relative variance for the
kill could lead to improved performance when selectivity
was misspecified. These results suggest that adjusting as-
sumed relative variances to account for potential model
misspecification could improve the reliability of assess-
ments, but this requires accurate perceptions about the po-
tential for such misspecifications. Merritt and Quinn (2000)
explored incorporating perceptions into KAA and suggested
that one benefit of KAA models is the explicit inclusion of
perceptions in a structured framework.

One major concern is the tendency for FVPA to have posi-
tive errors in stock size when kill is measured with substantial
error. The FVPA method, in an attempt to minimize survey
residual sum of squared errors, inflates the number of the
youngest age fish to produce a non-negative number of fish in
the older age groups. VPA requires that every cohort have
enough fish to have supported the total observed removals
(plus natural deaths), even if the kill-at-age data contained an
outlier due to a substantial error. Such an error can be handled
with KAA estimation models without the tendency to overes-
timate stock size, because they statistically deal with errors in
the kill. We believe that VPA estimation models are often in-
correctly used where kill is measured with substantial error
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Fig. 3. Box plots of relative error distributions from experiment 3 for spawning biomass at the start of year 21 for (a) status quo fish-
ing mortality (F) and kill coefficient of variation (CV) of 5%, (b) status quo F and kill CV of 25%, (c) high F and kill CV of 5%,
and (d) high F and kill CV of 25%. Boxes denote the interquartile range, and the vertical lines end at the furthest data point not lon-
ger than 1.5 times the interquartile range.



because of concerns about violating KAA kill selectivity as-
sumptions. Our results suggest that KAA estimators are likely
to be less erroneous in these situations.

Another widely accepted statistical principle is that over-
parameterization can lead to poor estimates with high variance

(Burnham and Anderson 2002). In our study, we considered
two cases particularly relevant to this issue. In experiment 1,
both the FVPA and the KAA models correctly described the
fishing mortality process in the absence of any error in the
kill. While FVPA does not directly estimate more parameters
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Estimating model

Status quo fishing mortality High fishing mortality

γ V C B N V C B N

Spawning biomass MRE
–0.3 19.64 22.92 5.64 0.82 14.09 19.75 5.43 0.39
–0.1 17.66 4.97 1.76 0.67 13.26 5.42 0.54 –0.92

0.3 13.30 –14.10 –6.82 –0.33 11.76 –14.19 –7.25 0.28

Spawning biomass MARE
–0.3 20.28 22.92 10.45 9.50 17.06 19.75 9.92 8.91
–0.1 18.79 9.34 9.69 9.99 15.17 9.91 9.78 8.78

0.3 13.93 14.29 9.44 9.47 12.99 14.66 10.26 8.44

Exploitation rate MRE
–0.3 –11.00 –6.70 2.05 0.36 –10.49 10.83 1.36 1.12
–0.1 –10.44 0.91 2.70 1.34 –7.49 4.76 2.19 1.55

0.3 –9.03 3.64 –0.20 1.26 –6.79 –7.04 1.05 1.01

Exploitation rate MARE
–0.3 17.66 11.60 10.87 7.97 14.72 11.43 7.70 6.02
–0.1 16.72 9.30 8.86 8.03 14.50 7.45 6.81 5.99

0.3 13.18 7.69 6.65 9.48 12.65 7.22 5.49 6.56

Note: Median relative error (MRE) and median absolute relative error (MARE) of estimates of the most recent
spawning biomass and exploitation rate are given. Kill and survey coefficients of variation (CVs) were 25%. Esti-
mating models were V for forward virtual population analysis, C for the statistical kill-at-age model (KAA) that as-
sumed constant kill selectivity over time, B for KAA that estimated selectivity in 5-year blocks, and N for KAA that
included the estimation of the one degree of freedom for nonadditivity parameter.

Table 5. Results of experiment 4 with the Tukey’s nonadditivity parameter (γ = –0.3, –0.1, or 0.3) con-
trolling how selectivity varied in response to fishing mortality (status quo and high).

Estimating model

Kill CV = 5%; survey CV = 25% Kill CV = 25%; survey CV = 50%

Survey weighting C B N C B N

Spawning biomass MRE
1 –4.47 –3.96 –2.90 –4.19 –5.87 –3.06
RV –37.25 –7.82 –34.05 –12.91 –5.06 –8.18

Spawning biomass MARE
1 8.29 7.47 7.97 13.96 13.89 14.64
RV 37.25 7.93 34.20 14.57 13.37 15.31

Exploitation rate MRE
1 11.25 1.49 12.05 12.70 3.40 13.08
RV 46.58 5.17 43.67 19.36 3.72 17.03

Exploitation rate MARE
1 11.25 4.71 12.05 13.66 11.19 14.31
RV 46.58 5.34 43.67 19.70 8.87 18.02

Note: The generating model was the time-blocked model. Estimating models are denoted as C for KAA that as-
sumed constant kill selectivity over time, B for KAA that estimated selectivity in 5-year blocks, and N for KAA that
included the estimation of the one degree of freedom for nonadditivity parameter. MRE, median relative error; MARE,
median absolute relative error; CV, coefficient of variation.

Table 6. Results of experiment 5 in which the survey weighting in the objective function of statistical
kill-at-age model (KAA) estimators was set to either the ratio of kill and survey coefficient of variation
(RV) or 1.



than KAA, we believe it behaves as though it does, because
fishing mortality was not constrained to follow the separable
model that was correct for this experiment. As a consequence,
FVPA performed worse (in terms of higher MARE) than KAA
in this experiment, even when kill was measured without er-
ror. Interestingly, the higher MAREs for FVPA were not as
large as would be expected by adding 200 free parameters for
fishing mortality. Nevertheless, the belief in greater parsi-
mony of VPA over KAA by some researchers was not sup-
ported by our results.

In experiment 3, one of our generating models assumed
constant selectivity. This is correctly modeled by the con-
stant selectivity estimating model and by special cases of the
time-blocked and nonadditive estimator. In this case, the ad-
ditional flexibility in how selectivity was modeled by the
time-blocked and nonadditive estimators led to essentially

no detectable degradation in the performance of those esti-
mators despite the larger number of estimated parameters.

Three of the generating models for selectivity in experi-
ment 3 had corresponding KAA estimators, so it is not sur-
prising that KAA performed well here. The fourth generating
model with random selectivity did not match any of the KAA
estimators, so FVPA would be expected to perform better. In-
deed, FVPA performed comparably to the time-blocked KAA
estimator, better than the nonadditive estimator, and better
than the constant estimator under high fishing mortality. It is
interesting that FVPA did not outperform all KAA estimators,
but perhaps there are selectivity scenarios with even greater
interannual variability that would favor FVPA.
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Fig. 4. Results for start of year 1 (first year) versus start of year
21 (last year) of an assessment using all combinations of gener-
ating models and estimators for experiment 3. (a) Median rela-
tive error (MRE) in spawning biomass for the first year of an
assessment versus that for the last year of the same assessment.
(b) Median absolute relative error (MARE) in spawning biomass
for the first year of an assessment versus that for the last year of
the same assessment. Solid lines are 1:1 lines.

Fig. 5. Median relative error (MRE) in spawning biomass for
each year of the assessments. Results are illustrated from experi-
ment 3 for cases where the generating model used selectivity
time blocks and the estimating model assumed constant selectiv-
ity. The high fishing mortality scenario is denoted by broken
lines and the status quo fishing mortality scenario is denoted
with solid lines. Kill coefficient of variation (CV) of 5% is de-
noted by circles and a kill CV of 25% is denoted by triangles.

Fig. 6. Retrospective patterns in median relative error (MRE) of
spawning biomass. All estimates are based on data generated
from experiment 3 for the time-block selectivity model and the
status quo fishing mortality rate scenario, with estimates obtained
using a constant selectivity model. Kill coefficient of variation
was either 25% (solid lines) or 5% (broken lines).



The role of measurement error in the performance of VPA as-
sessments is not entirely clear. Our results indicate that median
bias and overall performance of VPA depend upon complex
interactions involving details in how measurement errors are
generated, other specifics influencing the assessed popula-
tion and fishery, and approaches used in age-structured stock
assessments. Discrepancies in VPA performance in different
simulation studies may also be the result of differences in
VPA implementation. In contrast with our results, Punt (1997)
noted increasing negative bias with increasing measurement
errors associated with the kill-at-age composition when eval-
uating management based on VPA. These biases were not
large and he concluded that measurement error in the kill
was not a substantial issue for VPA. In his simulations, he
first generated lognormal errors for the kill-at-age, then nor-
malized the kill so observed annual total yield matched the
true value. We suspect his different result stems from the
assumption in his generating models that total yield was
without error, an assumption that may be a reasonable ap-
proximation for some commercial fisheries, but would not be
appropriate for simulating recreational-dominated fisheries.
Myers and Cadigan (1995) observed positive bias in maxi-
mum likelihood stock size estimates from VPA when survey
catch was multivariate lognormal, with the largest bias oc-
curring for the case with the highest survey variance. Punt et
al. (2002) reported substantial positive and negative biases
for VPA, although at least some of this reflects other differ-
ences between the generating and estimating models. They
found substantial differences between ADAPT and an ad hoc
tuned method, with ADAPT performing more poorly. This
result is surprising, as it contradicts the difference in relative
performance reported by Patterson and Kirkwood (1995).
Punt et al. (2002) suggested the difference might stem from
the fact that Patterson and Kirkwood (1995) assumed that
the kill-at-age was known without error.

In our study, we chose to use a forward VPA method be-
cause this allowed the cleanest comparison of a method that
assumed kill was known without placing other constraints on
fishing mortality, with methods that acknowledged error in
the observed kill but constrained patterns of fishing mortal-
ity. Our quantitative results should not be assumed to apply to
VPA using backward recursive calculations and constraints on
terminal fishing mortality. These backward methods usually
include iterative tuning mechanisms, such as setting the fish-
ing mortality for the last age of a cohort to an average for
nearby ages in the same year. Differences among implementa-
tions in the presence and form of these constraints could be a
large part of the reason for some of the discrepancies about
the performance of VPA methods described above. If an an-
alyst knew the correct relative fishing mortality rate for older
ages, then backwards VPA might perform better. However,
KAA performance may improve also if relative selectivities
for older ages were known.

Our results with regard to bias of KAA estimators of
stock size are consistent with results from other studies. In
the absence of model misspecification, median errors (me-
dian bias) were near zero, but mean errors (bias) were posi-
tive (Bence et al. 1993; Sampson and Yin 1998). Punt et al.
(2002) reported both positive and negative biases for KAA,
although the negative biases could reflect differences be-

tween the generating and estimating models. In developing
our simulations, we also explored the use of the nonlinear
correction, exp(–σ / 22 ), to obtain observed kill-at-age cor-
rected for expected lognormal bias. When we used this cor-
rection for the kill and survey data in experiment 1, the
KAA estimators produced negative median and mean errors
(biases) for population size. Clearly, there remain unre-
solved issues with regard to bias in age-structured assess-
ments.

NRC (1998) found that model misspecification due to
incomplete knowledge accounted for large relative errors in
population estimates. Failure to account for changes in se-
lectivity and catchability over time may be the leading cause
for poor model performance. Punt et al. (2002) partly attrib-
uted the poor performance of all estimating models in their
simulation study to the fact that none of them accounted for
changes in catchability and each diverged from the generat-
ing model in a variety of ways. We found that KAA models
that assume no change in kill selectivity when such change
was present substantially under- and over-estimated the pop-
ulation, when kill was measured with little error. Butter-
worth et al. (2003) estimated higher southern bluefin tuna
(Thunnus maccoyii) spawning biomass with a KAA model
that assumed constant kill selectivity than with one without
such an assumption. Not accounting for disproportional in-
creases in fishing mortality on less than fully selected ages as
fishing mortality increases may lead to overfishing (Myers et
al. 1997). We urge caution in applying KAA estimators that
assume constant fishery selectivity when selectivity stability
is in doubt, especially when kill-at-age observations have
low levels of error. In contrast, we found that there was gen-
erally little cost in lost efficiency or increased bias by apply-
ing models that allowed selectivity to vary over time in a
simple fashion, when selectivity was in fact constant. We ad-
vocate the use of such alternative models when constant se-
lectivity is in doubt, if only to evaluate the sensitivity of
assessment results to the constant selectivity assumption.

There is much work left to be done, both in defining
appropriate stock assessment modeling strategies and in de-
termining additional data that could improve assessments.
Unfortunately, we did not identify a single simple model
that always performed well in the face of different types of
temporal change in selectivity, although the KAA estimator
that estimated kill selectivity in 5-year blocks was the most
robust. Parameter-rich models for time-varying selectivity
(for example, models that allow parameters to vary accord-
ing to random walks (Ianelli 1996; Gudmundsson 1998;
Ianelli and Zimmerman 1998)) may perform well under a
wider range of conditions. NRC (1998) found such models
to be strong contenders. Nevertheless, our results suggest
that careful consideration of alternative approaches to mod-
eling time-varying selectivity should become a fundamental
part of developing an age-structured assessment. We do not
support an approach of avoiding selectivity assumptions by
using VPA instead of KAA, except when kill is measured
with negligible error and selectivity is likely to vary over
time. In our simulations, there was always a KAA variant
that performed comparably to FVPA and usually performed
much better, even when selectivity varied over time and kill
was measured with little error. There are major benefits to
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using KAA if an appropriate selectivity model can be iden-
tified.

We strongly urge analysts to consider patterns in residu-
als, retrospective patterns, and formal model selection crite-
ria (such as Akaike information criterion or for Bayesian
applications deviance information criterion) when compar-
ing and evaluating alternatives. The extent to which such
efforts can identify correct or at least adequate selectivity
models is, however, an important area for future research.
Residual patterns in age-structured data should indicate sub-
stantial departures from the constant selectivity assumption,
but more formal testing is needed. It may be that additional
data, such as mark–recapture estimates of absolute stock size
or gear studies directed at better understanding age- and
size- specific selectivity, will sometimes be required.

Both VPA and KAA modeling approaches make other as-
sumptions we did not investigate, which are also open to
question in any particular case (Megrey 1989; Quinn and
Deriso 1999). For example, these models usually assume that
all fish of a given age (and sometimes age and sex) are
equally vulnerable. Both approaches also usually assume that
the natural mortality rate is known and often constant, and if
the wrong natural mortality rate is used, then these approach-
es will under- or over-estimate the population size (Lapointe
et al. 1992; Mertz and Myers 1997; Clark 1999). Retrospec-
tive analysis may indicate when assumptions such as these
are violated (Parma 1993; Mohn 1999).

Since the number of comparisons of VPA and KAA mod-
els is low, additional work may provide helpful guidance to
fisheries managers on the benefits and shortcomings of vari-
ous modeling approaches. Comparison of our results with
those of other researchers suggests that patterns of bias and
uncertainty are strongly dependent on the particular situation
from which the data and modeling were conducted. Features
of our simulation design specific to the Lake Mille Lacs rec-
reational fishery (e.g., fishery selectivity pattern, number of
ages, number of years of data) may be responsible for some
of the patterns we obtained. Consequently, extensive com-
puter simulation seems essential for validating stock assess-
ments until general principles of statistical properties can be
elucidated.
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Appendix A. Model equations used in the
simulations of forward virtual population
analysis and statistical kill-at-age models.

Population dynamics model

(A1) Na+1,y+1 = Na,y exp(–Ma – Fa,y)

(A2) N10+,y+1 = N9,y exp(–M9 – F9,y)

+ N10+,y exp(–M10+ – F10+,y)

(A3) Fa,y = Sa,y Fy

Alternative selectivity models

Constant selectivity

(A4) Sa,y = Sa

Time-blocked selectivity

(A5) Sa,y = Sa,b γ ∈ block b

Nonadditive

(A6) S S f sa y a y a, = exp(
~ ~ )γ

Randomly varying

(A7) S
S

S
a y

a S a y

a S a y
S,

, ,

, ,

~ N=
exp( )

max( exp( ))
( , )

ε
ε

ε σS 0 2

Observation model

(A8) Ka,y = Na,y Fa,y(1 – exp(–Ma – Fa,y))/(Ma + Fa,y)

(A9) K Ka y a y K a y K K, , , , ~ N* exp( ) ( , )= ε ε σ0 2

(A10) I N qa y a y a q a y q q, , , , ~ N* exp( ) ( , )= ε ε σ0 2

List of symbols
Fa,y fishing mortality rate for age-a fish in year y

Fy fishing mortality rate in year y on fully selected (S = 1)
ages

fy ln Fy

f average over years of fy
~
fy

~
f fy −

Na,y abundance of age-a fish at start of year y
N10+,y abundance of age-10 and older fish (plus group) at

start of year y
Ma natural mortality rate for age-a fish
qa survey catchability for age-a fish

Sa,y selectivity of age-a fish in year y
Sa age-specific base selectivity used to determine Sa,y for

several selectivity models
sa ln Sa
s average over ages of sa

~sa s sa −
Sa,b age-specific selectivity for the 5-year time block b in

the time-blocked selectivity model
γ Tukey’s nonadditivity parameter

ε K measurement error influencing observed fishery kill-
at-age

ε q measurement error influencing observed survey index-
at-age

ε S error causing random variations in selectivity from year
to year

σ K
2 variance associated with measurement error in kill-at-

age
σ q

2 variance associated with measurement error in survey
indices-at-age

σ S
2 variance associated with errors causing random varia-

tions in selectivity (0.1 for ages 1–2 and 0.01 for ages
3–10+)
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Smax,y normalizing term for random selectivity model equal
to maximum value of the numerator of eq. A7 over
ages for a year

Ka,y kill of age-a fish in year y

Ka y,
* observed kill of age-a fish in year y (influenced by

measurement error)
Ia y,
* observed survey index for age-a fish in year y
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